Small sample bias properties of the system GMM estimator in dynamic panel data models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Sample Bias Properties of the System GMM Estimator in Dynamic Panel Data Models

By deriving the finite sample biases, this paper shows analytically why the system GMM estimator in dynamic panel data models is less biased than the first differencing or the level estimators even though the former uses more instruments.

متن کامل

A Transformed System GMM Estimator for Dynamic Panel Data Models ∗

The system GMM estimator developed by Blundell and Bond (1998) for dynamic panel data models has been widely used in empirical work; however, it does not perform well with weak instruments. This paper proposes a variation on the system GMM estimator, based on a simple transformation of the dependent variable. Simulation results indicate that, in finite samples, this transformed system GMM estim...

متن کامل

Approximating the Bias of the LSDV Estimator for Dynamic Unbalanced Panel Data Models

This paper extends the LSDV bias approximations in Bun and Kiviet (2003) to unbalanced panels. The approximations are obtained by modifying the within operator to accommodate the dynamic selection rule. They are accurate, with higher order terms bringing only decreasing improvements. This removes an important cause for limited applicability of bias corrected LSDV estimators.

متن کامل

Alternative Gmm Methods for Nonlinear Panel Data Models: Asymptotic Eeciency versus Small Sample Performance

Preliminary draft, comments welcome (Please do not quote or circulate without permission of the authors)

متن کامل

On the behaviour of the GMM estimator in persistent dynamic panel data models with unrestricted initial conditions

This paper investigates the behavior of the first-difference GMM estimator for dynamic panel data models when persistency of data is (moderately) strong and initial conditions are unrestricted. We show that initial conditions affect the rate of convergence of the GMM estimator under a local to unity system where autoregressive parameter is modeled as αN = 1− c/Np where N is the cross-sectional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Economics Letters

سال: 2007

ISSN: 0165-1765

DOI: 10.1016/j.econlet.2006.09.011